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Introduction  
 
It is a well known fact from signal theory that any temporal averaging of a signal for 
further signal processing introduces certain distortions compared to the theoretical 
expectations for the case of „instantaneous“ signals being processed. Still, such 
averaging is an unavoidable property of any measuring apparatus being used, either 
due to the inability to measure „instantaneous“ signals and therefore the required use 
of non-zero „sampling times“ for digital data, or due to the required, non-zero, 
integration times in an analog pre-processer (e.g. an A/D-converter, for example).  
 
Though this effect is not necessarily identical with the well known aliasing problems 
occuring due to insufficiently fast sampling of a signal with a given maximum 
frequency (with the well known results of the famous Shannon-Theorem for this 
particular case), it does indeed show at least some similarity to this effect.  
 
In this text, a detailed mathematical approach is used to outline the effects of 
temporal averaging for the case of photon correlation functions (although it could be 
extended to A/D-converted input signals from other sources easily), a comparison of 
the influence of the „Triangular Averaging Distortions“ on different Multiple Tau 
Correlation schemes, their noise performance, as well as a detailed description on 
how to avoid that „Triangular Averaging Distortions“ have any noticable effect on the 
results obtained from data analysis of the correlation functions measured. 
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1.0 Sampling  
  
Consider a stream of digital pulses in time, each identifying, for example, the 
successful conversion of an incoming (randomly distributed over time, though with 
non-uniform conditional probability of occurrence with time difference – or, in simple 
words, they „correlate“) photons into a binary digital information by an appropriate 
single photon detector with infinitely good temporal resolution. If each of this pulses 
was tagged with a time-tag, again with infinitely good temporal resolution, this pulse 
stream could as well be seen as a continuous stream of „arrival times“ of photons on 
this (just to mention this, of course non-existing in reality) detector. Thus we would 
define a series of pulses at certain, distinct arrival times 
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or, more handy for further computations, a series of time differences  
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Clearly, the probability that any (tk – tj) = (tl – tm) -> zero, simply due to the random 
nature of arrival times on the detector and the (presumed) infinite temporal resolution 
of the detector. 
 
The next task would be to compute a temporal auto correlation function (it should be 
noted that this holds true for cross correlations as well) from this stream of data.  
 
Using the usual definition of an (unnormalized) temporal auto correlation function of a 
process u(t) 
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or, the more practical approach of using an approximation to infinite upper bound 
integral above and replacing the upper bound by a finite measurement time 
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the above time series would now have to be converted in a rather simple „signal“, 
namely 
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or, it becomes one whenever the time difference between two pulses of the above 
time series corresponds exactly to T and zero for every other case. 
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Actually, the result of performing the upper bounded integration of (1.3) and thus 
using all N events in the time series under consideration would be rather 
disappointing - the correlation function would show non-zero results for at maximum 
N² lag times and zero for all others. Not much to work with. 
 
Clearly this would be different if the integration was performed over an infinite 
measurement time – in this case, the above scheme would indeed recover the 
correct auto correlation function for every lag time T. The cost is still prohibitive – 
infinity is a pretty long time to wait for. 
  
Still, and this is the good news, a careful inspection of the resulting correlation 
function approximation (1.3) would yield to the fact that the number of non-zero lag 
times in any given lag time interval would still be proportional to the average 
correlation function to be expected in this lag time interval from (1.2).  
 
The reason is, that although the probability of two pulse pairs having exactly the 
same time difference is zero, the probability that the time difference of two pulse 
pairs fall within an certain, non-zero, interval centred around a given time difference 
is not at all zero (obviously, if it was, no pulse pair would ever appear). Thus, any 
further approach should bin events falling into certain time intervals and compute 
correlation functions from these time intervals, rather than from the exact times. 
 
Using time intervals of length τ, or in technical terms a „sampling time“, leads to a 
simple integration all over a certain „sampling time“ the instantaneous signal u(t) 
resp. a simple counting of events within this sampling time for binary input signals 
and a resulting time integrated µi, can be defined as 
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With this, and using (1.2), the resulting time averaged correlation function reads 
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if the integration over t’ is performed. For the normalized time integrated correlation 
function, the above integral reads 
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Obviously, the resulting correlation of the time integrated process is itself the 
temporal average of the correlation function of the original process u(t) over the 
sampling time τ and centred at lag time iτ, however with a triangular weight imposed. 
It is noteworthy, that is was for this triangular shaped weight in the above integration, 
the terms „Triangular Averaging Error“, resp. „Triangular Averaging Distortion“ were 
introduced in the literature. 
 
 
 
2.0 Triangular Averaging Errors  
 
The triangular weight in (1.6) introduces a certain error in Gµ(i) compared to G(T) for 
every correlation function that is non-constant, resp. non-linear, or, more precisely 
(and this will become important later on) has a non-zero second derivative.  
 
 
2.1 Exponential Correlation Functions 
 
In the special case of fully normalized exponential correlation functions, the pre-factor 
can quickly be computed as 
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And, after performing the integration accordingly, this yields 
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Obviously, the „Triangular Averaging Error“, represented here as f(x) is a constant 
pre-factor on the resulting time averaged correlation function and hence does not 
alter the shape of the correlation function, but acts as a simple scale transformation 
only. As a result, for the case of a constant sampling time being used over the 
complete range of lag times there are no „Triangular Averaging Distortions“ for a 
single exponential correlation function at all. 
 
It should be noted that the above equations hold true in the case of multi-exponential 
correlation functions, because we can express both, the fully normalized intensity 
correlation function, as well as the field correlation function as a sum of exponentials.  
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However, as can be seen, the pre-factor will no longer stay constant in this case and 
„Triangular Averaging Distortions“ (though at very small magnitude) will follow : 
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In this case 
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As already mentioned, in the case of multi-exponential correlation functions, the pre-
factor is no longer a constant (though very small in variation), because in detail 
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2.2 Hyperbolic Correlation Functions 
 
 
For the case of hyperbolic correlation functions, the pre-factor can be computed 
using 
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which can be re-written as  
 

∫
−

−

+
+

=
τ

τ

τ

ωτ
τ

dtt

k

t
tgkgµ )(

1

11
)()(

22      (2.7) 

 
 
and, after performing the integration accordingly and expanding the resulting 
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Different from the case of a single exponential correlation function, the pre-factor is 
non-constant for the resulting time averaged correlation function of a hyperbolic, 
even for a constant sampling time τ. 
 
In the definition of this text, an exponential correlation function only shows „Triangular 
Averaging Errors“ as long as  a constant sampling time is used, whereas a hyperbolic 
correlation function not only shows „Triangular Averaging Errors“, but „Triangular 
Averaging Distortions“ as well, because the pre-factor itself always is a function of 
the lag time. It should be mentioned, however, that the variation is negligible 
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2.3 Undamped and Damped Cosine Correlation Functions 
 
 
For the case of undamped cosine correlation functions, the pre-factor can be 
computed using 
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After performing the integration accordingly, the result reads 
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which can again be expanded to second order terms 
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However, such expansion requires that 1)( ≤ωτ  due to the “non-decaying” nature of 
the undamped cosine function. Of course, this condition will be quickly violated for 
Multiple Tau Correlation schemes using increasing sampling times with lag time (see 
chapter 3.0), and for these, either higher order expansions than just second order, or 
(2.10) should be used instead .  
 
For the case of damped cosine functions, 
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The usual approach of expanding the integration result to second order terms is a 
sufficiently accurate approximation, as long as Γ< 2ω , independent of the sampling 
times used. 



© 2008 by ALV-GmbH. All rights reserved. Version 1.3., 27.07.2008 rp                                         - 8 - 

3.0 Triangular Averaging Distortions  
 
 
In either case, no matter if single-exponential, multi-exponential or hyperbolic 
correlation functions, the simple picture of a „Triangular Averaging Errors“ fails 
anyway whenever non-constant sampling times are used along the lag time axis.  
 
Such use of (many) non-constant sampling times is absolutely desired for statistical 
reasons though and exactly followed by the implementation of the „Multiple Tau 
Correlation“ scheme. In this scheme, blocks of k correlation estimators are computed 
using a constant sampling time τk and the sampling time is increased (usually 
doubled) for the next block of l correlation estimators, now using a sampling time of τl 
etc. pp. 
 
Typical implementations use blocks of 16 or 32 estimators for the first block and 8 or 
16 estimators for all preceding blocks with the sampling time being doubled from 
block to block, with the „classical“ Multiple Tau Correlation implementation first 
realised by K. Schätzel and ALV in the early 80’s of last century already used a 16/8 
channel per block scheme (for good reason).  
 
In this case, the „Triangular Averaging Errors“ still act as a constant pre-factor on the 
time averaged correlation function within each such block, but will of course be 
different from block to block due to the change (doubling) of the sampling time used. 
Here we are indeed faced with „Triangular Averaging Distortions“, because the 
resulting time averaged correlation function is no longer a scale transformed 
equivalent of the correlation function of the instantaneous process. 
 
The absolute deviations between the two resulting correlation functions can easily be 
computed using either the exact form or the approximation given in (2.4) for the case 
of a single exponential (again, this holds true for multi-exponential correlation 
functions in just the same way), in detail 
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The below graph illustrates the „Triangular Averaging Distortions“ for the case of a 
Multiple Tau Correlation scheme with an initial block of 16 estimators and preceding 
blocks of 8 estimators with doubled sampling time (MTC-16/8) and a Multiple Tau 
Correlation scheme with an initial block of 32 estimators and preceding blocks of 
eight estimators with doubled sampling time (MTC-32/16), both for β = 1 and  
a 2Γ of 0.001.   
 
 



© 2008 by ALV-GmbH. All rights reserved. Version 1.3., 27.07.2008 rp                                         - 9 - 

Triangular Averaging Distortions
Single-Exponential Data
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Clearly, in neither case the „Triangular Averaging Distortions“ are of an important 
magnitude for real-world correlation functions. Most experiments obtaining photon 
correlation experiments yielding exponential or correlation functions that can be 
reasonably well approximated by a sum of  weighted exponential functions with 
potentially different amplitudes (such data from DLS, DWS, FCS etc.) would require 
substantial measurement times to reach absolute noise levels in the order of << 10-3, 
which would anyway be required to show significant, yet even just visible, influence 
of the „Triangular Averaging Distortions“, no matter if a 16/8 Multiple Tau Correlation 
scheme or a 32/16 Multiple Tau Correlation scheme is used.  
 
The use of even more channels with constant sampling time within a sampling time 
block, such as a 64/32 Multiple Tau Correlation scheme, can not at all be motivated 
on the basis of „Triangular Average Distortions“ alone, keeping in mind that noise 
levels below << 10-4 are, to say the least, difficult to reach within still reasonable 
measurement times. 
 
Even less a problem the „Triangular Averaging Distortions“ get with a more realistic 
presumption of an experimental correlation function - if a multi-exponential correlation 
function with three components at equal amplitude and decay rates 0.00025, 0.001 
and 0.004 (for the field correlation function) is presumed, the „Triangular Averaging 
Distortions“ reduce even further (because the resulting correlation function is more 
„smooth“ or, more mathematical, has a smaller second derivative), see the below 
graph 
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Triangular Averaging Distortions
Multi-Exponential Data
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Quite obviously, while a noise level low enough to have significant influences of the 
„Triangular Averaging Distortions“ become visible is difficult to reach in the case of a 
single exponential function already, this becomes even more difficult in most practical 
application for both, MTC-16/8 and MTC-32/16 in terms of the required measurement 
time. For this reason, it is hard to see why there should be any advantage of using a 
MTC-64/32 implementation just for the sake of reducing the „Triangular Averaging 
Distortions“ to below 3 x 10-5.  
 
For hyperbolic correlation functions, such as in FCS experiments (2D-model), the 
„Triangular Averaging Distortions“ are shown in the next graph: 
 

Triangular Averaging Distortions
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And, for the sake of completeness, for the case of a double-hyperbolic correlation 
function (with a Γ-ratio of 1 : 5) the „Triangular Averaging Distortions“ are shown in 
the next graph:  
 

Triangular Averaging Distortions
Double-Hyperbolic Data
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which, not too surprisingly, does no longer show much difference in the peak value of 
the „Triangular Averaging Distortions“ compared to it’s single-hyperbolic sibling. The 
same holds true for FCS using 3D-models, and those including triplet-state 
correlations. 
 
Keeping in mind, that particularly FCS correlation data usually suffers from rather 
short measurement times compared to DLS or DWS data and thus significantly 
higher noise levels, „Triangular Averaging Distortions“ can hardly be accounted as 
being anything near to „problematic“ for these applications. 
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Drawbacks „High-Resolution“ Multiple Tau Correlatio n Schemes  
 
Obviously with some marketing strategy in mind, some other producers of correlator 
hardware refer to their implementations of 32/16 or 64/32 Multiple Tau Correlation 
Schemes as being of „high resolution“ type. Unfortunately, this argument does not 
really hold on a closer investigation of the matter.  
 
„High resolution“, in a strict sense and not as a slightly exaggerated description of the 
plain fact that simply more correlation channels are used within the same lag time 
range, would require that the ability of resolving certain features of the correlation 
function, or even more realistically in the results of the data reduction used on the 
correlation function, was increased compared to the classical 16/8 Multiple Tau 
Correlation scheme. Actually, this is not the case, but just the opposite is true - the 
„resolution“ of a 32/16 Multiple Tau Correlation scheme will at best be close to a 16/8 
implementation, but for sure not better, and a 64/32 Multiple Tau Correlation scheme 
will perform even worse than a 32/16 Multiple Tau Correlation scheme. 
 
From a data analysis point of view, there as well is hardly any need for more than 
16/8 channels per „octave“ (or doubling of the lag time), because these still ensure 
eight possible degrees of freedom per octave for the fit procedures used. As a matter 
of fact, the mathematical condition of the underlying fit problems (DLS/DWS/FCS …) 
will not allow to reliably extract more than eight … ten degrees of freedom even in a 
lag time range as large as 1 : 1000 without having practically noiseless data.  
 
Thus, the „resolution“ is mainly a matter of the statistical accuracy of the correlation 
estimators computed, less, but more precise correlation estimators are clearly the 
better choice to more, but significantly less accurate correlation estimators – and 
here a 32/16 or 64/32 Multiple Tau Correlation scheme falls short compared to the 
classical 16/8 Multiple Tau Correlation scheme – more, but significantly less accurate 
estimators will always be the result for identical measurement times.  
 
But why is this so ? The route to the answer will directly lead us to the next topic … 
 
 
 
4.0 Noise on Correlation Functions  
 
Systematic distortions, such as the „Triangular Averaging Distortions“ form only one 
part of the total contribute to the total uncertainty in a correlation estimator at a 
certain sampling / lag time combination and for a given measurement time. As could 
be seen above, in most experimental situations, they do not even contribute 
significantly, not to speak about the fact that fully systematic distortions are the 
scientists dream anyway, because the can easily be corrected due to the systematic 
nature (see Removing „Triangular Averaging Distortions“ from Correlation Functions). 
 
Keeping in mind the fact that photon correlation experiments usually try to gather 
information on stochastic processes rather than deterministic signals and in addition 
are to be „measured“ using detectors which as well show stochastic photon-to-pulse 
conversions, these two noise sources must be considered as well, if the significance 
of „Triangular Averaging Distortions“ is to be analysed. 
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The statistics of the photon-to-pulse conversion is merely detector dependent and 
rather independent of the underlying statistics of the photon pulse stream itself. This 
is a must condition obviously – the detector has to convert the stream of photon into 
a  stream of pulses such that the statistical properties of the photon stream is not 
altered other than in the absolute magnitude of first, second and/or higher moments.  
 
If this was not the case, any following moment analysis, such as computing 
correlation functions, for example, would completely fail. For most single photon 
detectors, this holds true in the „linear response range“, although some complications 
arise due the inherent self-correlations practically all single photon detectors show, 
such as dead-times and after-pulsing effects.  
 
The usual approach is to only use selected such detectors which show smallest self-
correlation and at small lag times only or to operate two detectors in a cross or 
pseudo-cross correlation scheme, hoping for the statistical independency of these 
self-correlations from one to another detector.  
 
While true in most cases, even this presumption fails for very small lag times and 
certain classes of single photon detectors (e.g. Avalanche Photo Diode detectors due 
to their inherent light emission [ref 3]).  
 
Nevertheless, even a completely noise-less, self-correlation-free, 100% efficient and 
instantaneously converting  detector would still convert a stochastic signal, namely 
the signal under investigation, and no matter how many photons such a detector 
would be able to detect and convert in a given sampling time, it would still at best 
yield a noiseless conversion of the underlying stochastic process. In simple words : 
no matter how many photons are detected, the statistical accuracy of the resulting 
correlation function (and/or other types of moment analysis) can never be better than 
the underlying statistical process of the signal allows. 
 
For this reason, the literature typically refers to two distinct sources of noise,  
 

• „Photon Noise“ or „Shot Noise“, which is introduced by the finite number of 
photons available to sample the instantaneous (or time averaged) underlying 
signal 

 
• „Diffusion Noise“ or „Signal Noise“, which describes the fact that the stochastic 

nature of the underlying process under investigation gives rise to another 
distinct „uncertainty“ in the resulting correlation function for finite measurement 
times. Interestingly, the term „Diffusion Noise“ was introduced because most 
photon correlation experiments are used to probe the diffusion of either 
molecules in a solvent (via light be scattered by these in DLS, or fluorescent 
light being emitted by these in FCS experiments) or the „diffusion“ of light 
within a highly dense molecule/solvent combination (via multiple-scattering of 
light in DWS experiments). In a more general context, the use of „Signal 
Noise“ instead of „Diffusion Noise“ would be more precise. 
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Without further lengthy and detailed algebra (see [ref. 1] or [ref. 2] for all details), the 
contribution of each of the above noise sources to the variance of a (normalized) 
intensity correlation function for complex-gaussian amplitude statistics (such as for 
DLS, sometimes in FCS and most probably for DWS experiments)  can be expressed 
as the expectation of the correlation function itself as follows  
 

 (4.1) 
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(see footnote for comments on FCS)1 

 
With M being the total number of samples taken (and thus Mτκ  being the total 
measurement time for the sampling time/sampling time group τk), n being the number 
of detected photons per sampling time and 1+β |χk|² being the expectation of the 
normalized intensity correlation function at lag time point k. All above terms are 
strongly covariant signal noise terms, with the exception of the last term, which is the 
random photon noise contribution (and thus only present on the diagonal terms of the 
co-variance matrix) [ref 2]. 
 
Numerical computations can now be performed straightforward (alternatively, a 
closed form of (4.1) can be given presuming a certain functionality of 1+β |χk|² such 
as an exponential, for example [ref 1]. However, the above numerical approach is 
much less complicated whenever a more complex functionality is presumed, such as 
a sum of exponential, for example) by in addition equating that: 
 
 

                                                 
1 For FCS, in particular for FCS on single molecules, severe complications arise due to the generally 
non-gaussian statistics for a very small average number of molecules in the illuminated beam, as well 
as secondary effects such as triplet states, photo-bleaching and „fluctuation of the average number of 
particles in the volume“ effects (the „number fluctuations“ inherent variance, so to say). The model 
shown herein is thus not directly applicable for the case of single molecule FCS experiments, yet not 
even easily adoptable for the FCS case. 
 
Generally, correlation functions from FCS experiments show worse noise behaviour compared to DLS 
data, simply because the „long lag time tails“ are much more pronounced for the hyperbolic decay 
behaviour of FCS correlation functions compared to the exponentials obtained in DLS experiments.  
 
This further supports the strategy of quickly increasing the sampling time with the lag time, such as 
performed by the 16/8-channel Multiple Tau Correlation scheme, because successful estimator noise 
reduction, in particular of the covariant contribution of the diffusion noise, is strongly dependent on the 
sampling time used at a given lag time point and can not be reached with a larger number of constant 
sampling time channels working at smaller sampling times ! 
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It is noteworthy, that whenever the measured normalized intensity correlation 
function is of sufficient accuracy and thus already a reasonable representation of the 
expectation, the estimators g2

ex.(k) can safely be used instead of the g2(k) enabling 
the computation of the variances of an arbitrary normalized intensity correlation 
function, as long as the presumption of amplitudes with complex gaussian statistics 
of the underlying process holds true. 
 
Equipped with these formulae, the to be expected variances (or Standard Deviations, 
simply by taking the square-root of the variances) for several, typical experimental 
situations can quickly be computed for any particular implementation of Multiple Tau 
Correlation schemes and compared to each other and the additional influence of 
„Triangular Averaging Distortions“ can be discussed in comparison to the effective 
noise after a certain, finite, total measurement time. 
 
To cover a rather broad range of experimental situations, the following types of 
correlation functions were considered : 
 

• Single-exponential, fast decay time, smaller average count rate in the 25.000 
counts/s regime – this would typically occur in DLS experiments on small 
particles, such as proteins-monomers, for example. 

  
• Multi-exponential, fast decay time to slow decay time, normal average count 

rate in the 250.000 counts/s regime – this would typically occur in most DLS 
experiments on multi-modal particles/molecules 

 
• Massively multi-exponential, fast to slow decay times, count rates in the 

250.000 counts/s regime – this would be a rather „limiting“ approximation to 
„general“ DLS experiments and a reasonable approximation for DWS 
backscattering experiments as well. 

   
 
In the below graphs, the correlation function variance estimators are plotted  for the 
above experimental conditions, each for a total measurement time of 100 s and  
1000 s, for MT-16/8 and MT32/16 respectively (MT-64/32 implementation data is not 
shown – the Std.Dev behaviour is always worse than that of MT-32/16 anyway), 
along with the correlation function and the „Triangular Averaging Distortions“ for the 
MT-16/8 scheme for comparison.  
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It clearly becomes visible, that for both cases of total measurement time plotted  
(100 s and 1000 s), the average Std.Dev (red and black graph) is considerable larger 
than the „Triangular Averaging Distortion“ for the Multiple Tau 16/8 implementation. 

Since the average Std.Dev scales with the total measurement time as
T

1
the 

required total measurement time for obtaining Std.Dev. of the same magnitude as the 
„Triangular Averaging Distortion’s“ maximum (~ 7 . 10-4), a total measurement time of 
approximately 3000 s would be required. 
 
Additionally, it becomes visible that the MT-32/16 Multiple Tau implementation (black 
graphs) falls short in total Std.Dev. for practically the complete lag time range by a 
factor of 2 compared to the MT-16/8 Multiple Tau implementation (red graphs). 
While this effect can be compensated for random noise sources, such as the photon 
noise, by the doubled number of correlation estimators per lag time range, it can not 
for the signal noise sources, because this is not a random noise source, but shows 
strong covariance. For covariant noise, the increased number of correlation 
estimators is, however, of no further help [ref 2]. It should be noted, that the  
MT-64/32 implementation shows even worse average Std.Dev. compared to either 
MT-16/8 or MT-32/16. 
  
The situation does not at all change for a strongly multi-exponential correlation 
function at 10 times higher count rate. In the next plot, the same information as 
above is plotted for a correlation function composed of four exponential at 
significantly different decay rate (0.1/ms, 1/ms, 10/ms and 100/ms) and 1 : 4 : 4  : 1 
amplitudes. 
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Standard Deviationof Mutiple Tau Correlation Functi ons
Multi Exponential Correlation Function, Γ = (0.1/ms, 1/ms, 10/ms, 100/ms @ 1 : 4 : 4 : 1 amplitudes), 

250 kcps Count Rate
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While the noise performance of both implementations are about the same (with  
slight advantages for the MT-16/8 implementation) for smaller lag times – which is 
easy to explain by the fact that in the above presumed experimental condition the 
photon noise is extremely small due to the comparably high count rate presumed and 
the  strongly covariant signal noise is the dominant noise source , MT-32/16 again 
falls short for lag times in the > 1 ms regime. Notably, the small contribution of the  
Γ = 0.1/ms decay rate fluctuation suffers most from this fact. 
 
As was to be expected, the „Triangular Average Distortions“ are much smaller than 
the average Std.Dev., even for 1000 s measurement time and yet again, a total 
measurement time of more than 1 hour must be used to have the average Std.Dev. 
hitting the maximum contribution of the „Triangular Average Distortions“.  
 
As a last example, the „massively multi exponential“ case is plotted, here using a 
hyperbolic correlation function at fast decay rate of Γ = 100/ms. As already outlined, 
this is a good approximation to many DLS/DWS experiments and gives, noting the 
comments made above on FCS correlation functions and their estimator variances - 
at least some general insight into a typical noise distribution for FCS experiments as 
well (typically FCS experiments will show significantly lower decay rates though). 
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Standard Deviation of Mutiple Tau Correlation Funct ions
Hyperbolic Correlation Function, Γ = 100/ms, 250 kcps Count Rate
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Two things become very obvious, at first that MT-32/16 again falls short in noise 
performance compared to MT-16/8, second that this is a first example were at least a 
few correlation estimators of the MT-16/8 Multiple Tau Correlation scheme could be 
visibly influenced by the „Triangular Averaging Distortion“ within still reasonable total 
experiment durations (here 1000 s). This gives at least a motivation for the correction 
schemes developed later in this text. 
 
In conclusion, a MT-32/16 or MT-64/32 Multiple Tau implementation obviously does 
not offer „resolution increase“ compared to the MT-16/8 scheme. Increased is solely 
the number of correlation estimators, however at the cost of decreased statistical 
accuracy per estimator. While this effect compensates for the photon noise 
contribution due to its truly random nature, it can not for the covariant signal noise 
contribution. For this, an increased number of correlation estimators with higher 
average Std.Dev. does not have any advantage. As was shown above, however, 
even for rather low count rates presumed, the photon noise is quickly reduced by 
either Multiple Tau scheme implementation along the lag time axis and practically 
photon noise never is the dominant noise source anyway.  
 
An exception form this would be the measurement of very fast fluctuations at 
extremely small count rates (say Γ > 100/ms at a count rate << 5 kcps), as it could 
appear for rotational diffusion measurements in DLS or FCS or DWS transmission 
measurements. In these cases, all Multiple Tau implementations would give about 
the same overall statistical accuracy.  
 
Yet again, even in these cases there would not be any „resolution increase“ due to 
the use of a higher number of linear channels per lag time interval.  
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5.0 Removing „Triangular Averaging Distortions“ fro m  
Correlation Functions  

 
 
As was shown in the above sections, „Triangular Averaging Distortions“ seldom have 
a significant influence on Multiple Tau Correlation correlation functions, even for MT-
16/8 implementation, but are normally covered by the much larger estimator noise of 
such a correlation function even for longer to very long measurement times.  
 
While this already should rule out the use of MT-32/16 or MT-64/32 implementations 
of Multiple Tau Correlation by itself, simply because both show decrease in overall 
statistical accuracy of the resulting correlation functions compared to the classical 
MT-16/8 scheme, the idea of using „more channels per sampling time block“ should 
be fully dropped once knowing that „Triangular Averaging Distortions“ can always be 
removed from the correlation function by several methods. 
 
 
Method 1: Numerical Correction via the Second Derivative 
 
Let’s presume as correlation function any function with an existing Taylor-series 
expansion in the lag time t around t = 0 (for convenience, any other point would do as 
good), thus : 
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Computing the time averaged correlation function of this function at any point t then 
leads to  
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where all terms of higher order in τ  than second order were dropped. This is an 
interesting result, because it shows that the effects of temporal averaging can be 
(practically) fully described by the second derivative of the original correlation 
function for all decaying correlation functions (see comments on undamped cosine 
functions in 2.0). In addition, it gives an elegant insight, why for a single exponential 
correlation function the pre-factor describing the „Triangular Averaging Error“ remains 
fully constant, whereas it does not for a hyperbolic correlation function, for example: 
while in the case of a single exponential, all even derivatives (uneven derivatives as 
well, just for the sake of correctness) are exactly this exponential function scaled only 
by the inner derivatives, this does not hold true for a hyperbolic function obviously. 
Notably, an undamped cosine function should show constant pre-factor behaviour as 
well, because all even derivatives are again cosine functions (however, in the 

1)( ≤ωτ  limit only ! For larger τ ω the higher than second order terms in 5.2 must no 
longer be dropped).  
 
As a matter of fact, computing the second derivate of a given correlation function 
analytically is usually less time-consuming than performing the (straightforward, but 
lengthy) integration over the triangular weight and in addition it can easily be 
performed on the measured correlation function as well, because a simple (though 
rather precise) numerical approximation to the second derivate exists: 
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which can directly be applied using the correlation data estimators themselves, at 
least as long as they are already precise enough; in this case, the „Triangular 
Averaging Error/Distortion“ can be computed as 
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where the error term mainly depends on the so far reached accuracy of the 
approximation data gµ(k) (note : the error term of using the numerical representation 
of the second derivative was dropped – it can be shown to be much too small to 
contribute significantly for the purposes outlined here. Still, the error term shown 
above does indeed depend additionally on the fact that gµ(k) do have the „Triangular 
Averaging Errors“ added – however, as was shown above, the noise level usually is 
significantly larger. If the data is extremely precise, additional recursions should be 
used to recomputed the „Triangular Averaging Errors“ from the values gµ(k)- 

)( τkTriang∆  etc.) and can be shown to scale with 
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presuming gaussian distributed noise on the correlation estimators, which holds true 
for the case of photon noise being the dominant noise source. For signal noise being 
the dominant factor, the average error usually is even smaller due to the strong 
correlation of the signal noise contribution.  
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Method 2: Correction via „Absorption into the Fit Model“ 
 
While the direct computation of the second derivative, or it’s numerical cousin, are 
very useful for accurate data and/or model function computations, for everyday use 
an even simpler and yet exactly as precise method exists. For certain the correlation 
function as such is not the goal of any of the photon correlation experiments, but 
instead some further data analysis is usually applied to extract the decay rates in one 
or the other way. All these „fits“ are numerical procedures trying to fit a certain 
number of model functions to the correlation function while trying to minimize certain 
statistical criteria (least-squares-fitting, which minimizes the sum of the quadratic 
distances from model function to the measured data points, for example).  
 
The most obvious way to incorporate „Triangular Averaging Distortion“ correction into 
the fitting procedure thus is to, instead of using the pure model functions for the fit, 
use model functions that already incorporate the additional „Triangular Averaging 
Distortion“. 
 
With the methods shown in this text this is particularly easy to do – the to be 
expected contribution of the „Triangular Averaging Distortion“ for a certain model 
function at lag time kτk and sampling time τk  will correctly be computed (with either or 
approach) and added to the model function accordingly, for example, for a single 
exponential as model function for the intensity correlation function, this yields 
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were the result of the integration over the triangular weight of the model function for  
the specific sampling time range -τk … +τk at lag time Tk was used. Unfortunately, 
this can not be linearly adopted to multi-exponential models in DLS, because the fit 
models in DLS are linear in field correlation function and quadratic in the intensity 
correlation function (where the triangular averaging takes place as described herein), 
thus  
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and cross-terms arise in the intensity correlation function (and it’s second derivative, 
of course) requiring the simultaneous knowledge of all Γ1 … ΓN and their relative 
amplitudes. At least the later (if not both) are the scope of the fit though … thus, this 
approach always requires non-linear fitting strategies (which is not a problem for 
multi-exponential force fits – they require non-linear fitting strategies anyway, but is a 
problem for the well known „grid-based“ fitting strategies, such as NNLS, CONTIN 
and ALV-NonLin as well as most implementations of MEM). 
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In this case (though not restricted to this case, but a generally valid approach) it is 
more easy to proceed in a „Three Step Algorithm“ : 
 
 

1. Perform a (usually least-squares) fit using the desired fit-model and the 
data )(kgµ , with the fit results compute )(* kgµ   

 
2. Using )(* kgµ compute )( τkTriang∆  via (5.4) 

 
3. Redo the fit using as data )()( τkkg Triangµ ∆−  

 
Because )(* kgµ , the recomputed correlation data from the fit model is used, there is 

no need to be careful about the potential problems of the numerical computation of 
the second order derivative due to the noise level in )(kgµ .  

 
Although the above method is generally valid and convergent for a broad class of 
correlation functions (in essence, the requirement is that the second derivative exists 
for all k and the function is decaying to zero for ∞→k . An additional, practical 
requirement is that the function can be fitted via a least-squares fit the fit model to at 
least reasonable precision for all k), extreme care should be taken for correlation 
functions composed of undamped cosine functions.  
 
For these, the Multiple Tau Correlation scheme quickly involves sampling times 
(much) larger than the cosine inverse period and the triangular averaging more and 
more corresponds to classical aliasing effects and usually any fit not taking these into 
account will give rather poor results with rather noticeable (and systematic) deviation 
between )(* kgµ  and )(kgµ .  In addition, due to the non-decaying nature of undamped 

cosine functions, the approximation shown in (5.4) for the “Triangular Averaging 
Distortion” will only be valid for )cos()(1 sµs ktAkgt ωω =< for  

 
In these cases, either the fit must be restricted to data points satisfying the above 
condition, or the closed form result of the integration of the cosine functions with 
triangular weighting must be used (2.10). In both cases the convergence of the 
method should be carefully inspected. 
  
It should, nevertheless, be stressed that for pure cosine correlation functions the use 
of a constant sampling time correlation scheme with a reasonably large number of 
correlation channels usually is the better choice, though the MT-16/8 implementation 
was succesfully applied to such problem classes correctly fitting the data even for 

10>>stω using the closed form equation along with non-linear fitting methods. 
 
To prove the schemes extreme efficiency, data taken over 12 hours (to be able to 
perfectly visualize the „Triangular Averaging Distortions“) from a special random test 
generator with pure single exponential correlation function expectation (proprietary 
development of ALV, implemented as test generator in the most modern ALV-7004 
and ALV-7004/FAST correlators) was analyzed with and without the correction via 
„Absorbing into the Fit Model“. The test data generated has an expectation for the 
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decay rate of 4,817/ms +/- 0.023/ms, an expectation for β of 1.0 +/ 0.001 and an 
expectation for the baseline of <10-8. The average output count rate was 312,5 kcps. 
 

Fit without and with analytical "Triangular Averaging Distortion" correction 
Single Exponential Test Generator data with Γ = 4.8167/ms, 12 h total measurement time 

ALV-7004 Multiple Tau Digital Correlator
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After ~12 hours of measurement time using an ALV-7004 Multiple Tau Digital 
Correlator, the average noise level can be shown to be about 410−≤δ  for the 
complete lag time range shown. Clearly, for the uncorrected fit version, thus fitting 
the pure model functions only, the triangular averaging distortions become easily 
visible within the residuals ))()(( * kgkg µµ − .  

 
Fitting the corrected model function incorporating the to be expected distortions 
removes this problem completely and yields smooth residuals (they are smooth 
because they are correlated, as we outlined above) in this lag time regime, all well 
within the average noise level – the „Triangular Averaging Distortions“ are thus fully 
removed.  
 
 
In both cases a non-linear least-squares fit approach was used force fitting 
 

BeAkg kTduncorrecte += Γ−2)(         (5.8) 

 
resp. 

BeAkg kTcorrected k +Γ+= Γ− )
12

)²2(
1()( 2 τ

      (5.9) 

  
with A, Γ and B being optimized in the fit. The numerical results of the fit are given in 
the below table, again with the values to be expected from the test generator data 
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 Test Generator Data, Fit Results 
 

  
Uncorrected 

Fit Model 
 

 
Corrected 
Fit Model 

 
Test Generator’s 

Expectations 

A 1.0 1.0 1.0 +/- 0.001 
G[1/ms] 4.8125 4.8169 4.817 +/- 0.023 

B 4.437 .10-5 0 0 +/- 10-8 
LSQ [arb.] 1.0704 .10-4 5.1564 .10-5  

 
 
Although the uncorrected version of the fit shows significantly worse residuals then 
the corrected version, the results are much less different than could be expected. 
The primary parameter of interest, namely the decay rate differs not more than just 
0.1% from the expected result. Obviously, this minor change in the decay rate 
already minimizes the effect of the „Triangular Averaging Distortions“ in the least-
squares sense. In fact, we can equate:  
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The below plot shows this graphically for different Γ/Γ∗ relations. Obviously, the 
minimum for noiseless data can be found at Γ/Γ∗ ~1.0007, which is in very good 
agreement with the results obtained from the actual fit of the data of ~1.00094. 
Interestingly, the additional B parameter, if taken into account as well, does not 
change the minimum position of Γ/Γ∗ significantly, although it does indeed change the 
absolute value of the LSQ-sum. 
 
 

Influence of Triangular Averaging Distortions on Av erage Gamma Determination
Least-Squares Sum for different Γ/ΓΓ/ΓΓ/ΓΓ/Γ* relations, noiseless data
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The same data was analysed using the „Three Step Algorithm“ with a single iteration.  
As was expected, it gave identical results compared to the analytical approach, see 
below graph of the residuals :   
 

Fit without and with "Triangular Averaging Distortion" correction,
"Three Step Algorithm" Correction Scheme
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In summary, the effects of the „Triangular Averaging Distortions“ on the results of a 
single exponential fit to the correlation data are surprisingly small and unless the data 
is of extreme accuracy, the results inherent inaccuracy due to the correlation 
estimator noise level is by magnitudes larger. The explanation of this effect lies in the 
strict systematic and non-zero contribution on just a few points of the correlation 
function due to the „Triangular Averaging Distortion“. 
 
 
Method 3: Modified LSQ-Sum Correction 
 
In the case of non-linear fitting, it is not necessarily required to restrict the fit to a 
“pure” least-squares approach, thus to compute the least-squares sum using the 
corrected fit model (recall 5.10) 
 
 

( ) min.corr * →−= ∑ 2)()(
k

µµ kgkgε                          (5.11) 
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Instead, the “Triangular Averaging Distortion” can as well be incorporated in the 
process of computing a “corrected” LSQ-sum, thus 
 

min.**** →






 ++−−−−= ∑ 2])1()(2)1([
12

1
)()(

k
µµµµµ kgkgkgkgkgε       (5.12) 

 
using again the numerical approach of computing the second derivative of the model 
function. Indeed, this method is the preferred method for all non-linear fits 
implemented in the ALV-Correlator Software for WINDOWS® package, showing 
exactly the same accuracy, as Method 1 and Method 2 described above. 
 
While such an approach could principally be implemented for the case of grid based 
“standard” LSQ-methods, such as CONTIN, ALV-NonLin or MEM as well, the 
number of grid points required would be three-fold compared to the uncorrected fit 
model (because the fit matrix would have to be extended per row for the resulting 
model data of )1(* −kgµ and )1(* +kgµ , requiring additional 2N columns in the fit matrix 

per row) and such approach would suffer from significant performance penalties 
compared to the “Three Step Algorithm” described above, without yielding to any 
better results.  
 
 
Methods 1…3 outlined above show, that removing „Triangular Averaging Distortions“ 
from a correlation function is simple and highly efficient, though, keeping in mind the 
effective influence of these on the fit results, not desperately required in most cases. 
 
Nevertheless, the ALV-Correlator Software for WINDOWS® package uses either the 
“Modified LSQ-sum Correction” for all non-linear fits implemented or the „Three Step 
Algorithm“ for the grid based fitting strategies implemented per default to safely 
correct for potential „Triangular Averaging Distortions“.  No such correction is applied 
for the „Cumulant Fit“, were this would not pay off anyway. 
 
 
 



© 2008 by ALV-GmbH. All rights reserved. Version 1.3., 27.07.2008 rp                                         - 27 - 

Conclusion  
 
One particular effect of sampling data from a time continuous process for correlation 
function computation is that sampling time dependent scale transformation and/or 
distortions due to „Triangular Averaging Effects“ must be expected.  
 
While not problematic for a small enough and constant sampling time correlation 
function, the use of several, different sampling times in parallel and along the lag time 
axis, as is used in particular in Multiple Tau Correlation schemes, always makes 
these „Triangular Averaging Effects“ a systematic distortion of the correlation function 
– the so called „Triangular Averaging Distortions“.  
 
The absolute magnitude of these distortions stays rather small, no matter of the 
specific implementation of Multiple Tau used (MT-16/8, MT-32/16 or MT-64/32), for 
most experimental conditions even too small to become visible – they will be deeply 
buried in the photon and signal noise.  
 
Still, in some cases it is worth considering a full correction of these distortions. This 
can be performed at very high accuracy, in some cases even analytically, by the 
methods outlined herein.  
 
In none of these cases it seems useful to instead increase the number of correlation 
channels per sampling time from the 16/8 scheme used in the classical Multiple Tau 
Correlation scheme to decrease the total magnitude of the „Triangular Averaging 
Distortions“, because doing so has significant impact on the overall statistical 
accuracy achievable for the correlation functions computed. Correlation functions 
computed using MT-32/16 or even MT-64/32 sampling time implementations of 
Multiple Tau show less statistical accuracy within the same measurement time and 
thus reduced, and by no means higher, „resolution“ compared to the 16/8 channel 
scheme. 
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